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1 Executive Summary 
This final report summarizes the research carried out from May 2010 to October 2012. The 

tasks outlined in the original proposal for two years are: (1) literature review and development of 

a peridynamic solver, (2) development of an automatic volume calculation routine using the 

partition of unity principle, (3) numerical testing for different grid widths to horizon ratios, (4) 

development of an approach to add another material variable in the given approach,  (5) 

preparation of the imaging system for experimental testing, (6) development of peridynamic and 

finite element coupling module, (7) parallelization of the solvers, (8) verification of the coupled 

code, and (9) preparation of the imaging system. As for the literature review for the peridynamic 

formulation, intensive study has been conducted. A peridynamic solver has been developed in 

Fortran, and the effect of the different grid sizes and horizons are investigated for brittle 

materials. The numerical methodology has been extended to accommodate the plasticity 

behavior of materials. The peridynamic code is implemented using a graphics processing unit 

(GPU) for highly parallelized computation. A comparison of stresses and strains by finite 

element analysis (FEA) and peridynamic solutions is performed for a ductile material. A 

multiscale procedure is proposed to bridge the material models by means of peridynamic bonds 

and the corresponding macroscale material model used in the finite element analysis. A 

numerical scheme to couple the peridynamic nodes and finite elements is developed in Matlab 

and is verified. From the point of view of experimental work, a high speed camera setup was 

prepared, and impact tests were conducted. The digital image correlation technique (DIC) was 

selected to analyze the high speed response of the material. During the phases I and II, four 

research papers have been submitted to international journals. Three papers have been published, 

and the last one is under review.  
 

2 Introduction 
Fracture is one of major concerns in the engineering field for a long time, and people have made 

substantial efforts in order to understand material failure. Inglis and Griffith made contributions 

to the early development of fracture analyses, and Irwin extended the Griffith approach by 

developing the energy release rate [1]. Fracture mechanics provides a more reliable methodology 

for engineering designs than the traditional strength based approach. However, classical fracture 



mechanics has its limitations. For example, a pre-existing crack needs to be defined, and the 

fracture propagation zone is required to be small compared to geometrical dimensions [2, 3]. 

 

In order to simulate crack growth and material damage, various numerical methods have been 

studied. The cohesive crack model addresses relationships between the crack opening 

displacement and the cohesive tractions resisting the separation of cracks [4-6]. The cohesive 

zone models have been incorporated into finite element (FE) models using interface elements 

and contact surfaces. The partition of unity finite element method (PUFEM) was presented by 

Melenk and Babuska [7]. Belytschko and collaborators [8, 9] extensively investigated the 

partition of unity principle for simulations of fracture problems and developed the extended 

finite element method (XFEM). The XFEM allows the discontinuity not constrained to element 

boundaries, and it can model the discontinuity without remeshing [10]. Mariani and Perego [11] 

presented a method for the simulation of quasi-static cohesive crack propagation using the 

XFEM for quasi-brittle materials. Cox [10] proposed enrichment functions to represent the 

discontinuity using an analytical investigation of the cohesive crack problem. Considering the 

minimization of the total energy of the global system, Meschke and Dumstorff [12] proposed a 

variational form of XFEM for the propagation of cohesive and cohesionless cracks in 

quasi-brittle solids. Meshfree and particle methods [13] demonstrate capability for numerical 

simulations of material failures. Molecular dynamics, for example, is capable of investigating 

nonlinearities in the vicinity of cracks, the bond breaks between atoms, and the formation of 

extended defects [14-16]. Research on coupling finite element methods and meshless methods 

[17, 18] has also been conducted. 

 

A great deal of research effort has been made to study many fracture problems. One common 

benchmark problem characterized by the mixed mode fracture is the test of a 

double-edge-notched concrete specimen conducted by Nooru-Mohamed et al. [19]. The test of 

Nooru-Mohamed was adopted by De Borst [20] in the discussion of computational modeling of 

concrete fracture. For the analyses, the finite element smeared-crack approach with the gradient 

Rankine plasticity model, Cruch-Crack model, and Ottosen’s model has been used for numerical 

studies of Nooru-Mohamed’s experiment by Di Prisco et al. [21]. A comparative study of 

three-dimensional constitutive models for the double-edge-notched test was performed by 



Pivonka et al. [22]. Gasser and Holzapfel [23] employed the cohesive crack model with the 

PUFEM for the numerical modeling of the test. The XFEM was utilized by Cox [10], Meschke 

and Dumstorff [12], and Unger et al. [24] for the simulations. An adaptive mesh refinement 

technique applied to a nonlocal version of anisotropic damage model was  employed by Patzák 

and Jirásek [25]. Réthoré et al. [26] used a hybrid analytical and XFEM to study the propagation 

of curved cracks in the double-edge-notched concrete specimen.  

 

As a reformulated theory of continuum mechanics, peridynamics eliminates the spatial 

derivatives, and it is valid regardless of discontinuities [27,28]. Therefore, peridynamics is useful 

to solve problems involving spontaneously emerged discontinuities. With the general 

applicability of peridynamics, many applications of the method have been studied. Silling and 

Askari [29] wrote the first paper on the numerical simulation using the peridynamic model. In 

their work, the bond-based peridynamics is employed to study the convergence in a fracture 

problem and impact of a sphere on a brittle target. Dayal and Bhattacharya [30] studied the 

kinetics of phase transformations using peridynamics without any additional kinetic relation or 

the nucleation criterion. By adding pairwise peridynamic moments, Gerstle et al.[31] proposed a 

micropolar peridynamic model. Other applications of peridynamics include modeling of the 

structural responses under extreme loading [32], structuralstability and failure analyses [33], 

fracture analyses [34–37], and nucleation analyses of a crack in a solid body [38]. Peridynamics 

also has been applied to study the effect of fiber directions in composites on the fracture and 

damage evolution considering anisotropic properties[39-43]. A generalized formulation of 

bond-based peridynamics was introduced by Silling et al. [44], which is called the state-based 

peridynamics. The convergence of peridynamic states to classical elasticity was studied by 

Silling and Lehoucq [45], and it is shown that the peridynamic stress tensor converges to the 

Piola-Kirchhoff stress tensor as the length scale goes to zero. Using the state-based peridynamic 

method, Warren et al. [46] studied the elastic deformation and fracture of a bar. Littlewood [47] 

presented fragmentation of an expanding tube modeled with state-based peridynamics. Foster  

et al. [48, 49] studied viscoplasticity and the failure criterion for peridynamic states. 

 

Compared with FEM, peridynamics is computationally expensive. Macek and Silling [50] 



implemented peridynamics in a commercial finite element analysis code, ABAQUS, using truss 

elements. The conventional FE mesh is coupled with the peridynamic truss mesh using the 

embedded element feature available in the finite element analysis code. Lall et al. [51] used the 

peridynamics based finite element model to study shock and vibration reliability of electronics. 

Kilic and Madenci [52] presented a coupling approach using overlapping regions in which both 

peridynamic and FE equations are utilized. Agwai et al. [53] and Oterkus [54] employed the 

submodeling approach to couple the FEM with peridynamics. In their approach, the global 

analysis by means of finite element analysis is performed first, and then peridynamics is used for 

submodeling. A morphing strategy based on the energy equivalence was proposed by Lubineau  

et al. [55].  

 

In this research, we introduce a coupling approach of discretized peridynamics with finite 

elements. Different from the approach in [50, 51] implementing peridynamic model in the 

framework of the conventional FEM and the submodeling approach [53, 54], the peridynamic 

subregion is directly coupled to the finite element subregion in the present approach. An 

interface element is introduced to calculate coupling forces instead of using overlapping regions 

[52] or the morphing strategy [55] to couple peridynamic and FE subregions. Depending on how 

coupling forces are divided to FE nodes of an interface element, we further discuss two types of 

coupling schemes. 

 
Figure 1: Schematic of peridynamics. 



3 Theory 
3.1 Peridynamic theory 
In the peridynamic theory, the equation of motion of a material point at x  in the reference 

configuration at time t , as shown in Figure 1, is written as [27, 56, 57]  

 '( , ) = ( , ) ( , ),t dV tρ +∫ x
x

u x f b x η ξ
H

 (1) 

where ρ  is the mass density, u  is the displacement vector, f  is a pairwise force vector that 

the material point at 'x  exerts on the material point at x , xH  is a neighborhood of the 

material point at x , and b  is the body force density field. The relative position vector in the 

reference configuration is expressed as [29]  

 = ,′ −x xξ  (2) 

and the relative displacement vector at time t  is written as  

 = ( ', ) ( , ).t t−u x u xη  (3) 

For each material, a scalar δ , called the horizon, is assumed to exist to determine the interacting 

spatial range between the material point at x  and the material point at 'x  such that  

 ( , ) =   if > ,δ∀f 0η ξ η ξP P  (4) 

where ⋅P P  is the Euclidean norm. The pairwise force vector f  in the bond-based 

peridynamics is expressed as  

 ( , ) = ( , ) ,f +
+

f η ξη ξ η ξ
η ξP P

 (5) 

where f  is a scalar-valued pairwise force. The bond stretch s  is defined as  

 ( , , ) = ,s t + −η ξ ξη ξ
ξ

P P P P
P P

 (6) 

 

where ξP P is the original bond length in the reference configuration, and +η ξP P is the 

deformed bond length. If the bond stretch = 0s , then there is no pairwise force f  between 

material points. Figure 2 shows a microbrittle material model defined for peridynamic bonds. 

The bond force, which is a scalar function of the bond stretch s , is  

 ( , ) = ( , , ) ( , , ),f cs t tµη ξ η ξ η ξ  (7) 



where c  is the micromodulus, and µ  is 

the scalar function to determine the bond 

failure. The micromodulus c  can be 

determined by equating the strain energy 

density in the classical elasticity [29] or by 

numerical calculations [56]. The 

numerically determined micromoduli, 

obtained by considering a finite number of 

bonds within the horizon, are summarized 

in Tables 1 and 2 for one- and three-dimensional models, respectively. The critical stretch for 

bond failure is denoted as 0s . Once a bond fails, it cannot sustain force any more. The critical 

bond stretch 0s  for microbrittle materials is obtained by setting the work required to break all 

the bonds per unit fracture area identical to the energy release rate fG  [29]:  

 0

5
= .

9
fG

s
kδ

 (8) 

By considering broken bonds, damage dependencies can be introduced into the critical bond 

stretch [29, 34]. The scalar function µ  is related with the critical bond stretch as  

 01 if ( , , ) < for all 0 ,
( , , ) =

0 otherwise.
s t s t t

tµ
′ ′≤ ≤




η ξ
η ξ  (9) 

To solve the peridynamic equation of motion, the material domain is discretized with a number 

of nodes. The distances of two adjacent nodes are identical over the domain and denoted as x∆ . 

Therefore, the volume representation of each node is 3( )x∆ . The peridynamic equation of 

motion after discretization is written as  

 
=1

= ( , ) ,
N

I
t t t
I J I

J
Vρ +∑u f b η ξ

H

 (10) 

where t
Iu  is the acceleration of the node I  at time t , ( , )tf η ξ  is the pairwise force, 

I
NH  is 

the total number of nodes within the horizon of the node I , and t
Ib  is the body force at time t . 

The damage index of a node is defined as [29]  

 
Figure 2: Microbrittle material model. 
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In order to consider the volume reduction of a node that has an intersection with the horizon 

boundary, a volume reduction scheme [58] is introduced as follows:  

 

Horizon δ  Micromodulus 1c  (N/m 6 ) 

2 x∆  
42

E
x∆

 

3 x∆  
4

2
9

E
x∆

 

4 x∆  
48

E
x∆

 

5 x∆  
4

2
25

E
x∆

 

Table 1: Micromodulus 1c  in one-dimensional domain. 

 

 

 

Horizon δ  Micromodulus 3c  (N/m 6 ) 

2 x∆  40.302942 E
x∆

 

3 x∆  40.052385 E
x∆

 

4 x∆  40.017290 E
x∆

 

5 x∆  40.006819 E
x∆

 

Table 2: Micromodulus 3c  in three-dimensional domain. 
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2 2
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0          otherwise

J j
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J
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V r
r

V
V r

δ δ δ

δ

  −
+ −      

− 
 
 

ξ ξ
ξ

ξ

P P P P
P P

P P

„ „

„
  (12) 

where ( )jrδ −  is the distance from which the volume is reduced, and jr  is set to be the half of 

the grid spacing x∆  in the numerical implementation. 

  

3.2 Finite element formulations 
The equation of motion in the conventional continuum mechanics is derived from the principle 

of linear momentum. The temporal change rate of linear momentum is equal to the force applied 

on the body as [59]  

 ,= in ,B
i ij j iu fρ σ + Ω  (13) 

where ρ  is the density, iu  is the acceleration field, ijσ  is the Cauchy stress tensor, and B
if  

is the body force density field. The essential boundary condition uΓ  and natural boundary 

condition fΓ  are defined, respectively, as [60]  

 = on ,i i uu U Γ  (14) 

 = on ,s
ij j i fn Fσ Γ  (15) 

where the surface of the body = u fΓ Γ ∪Γ , = 0u fΓ ∩Γ , and jn  means the components of the 

unit outer normal vector on Γ . The constitutive equation for continuum is stated as  

 = ,ij ijkl klCσ ε  (16) 

where ijklC  is the elastic constitutive coefficient, and the components of strains are defined as  

 ( ), ,
1= .
2ij i j j iu uε +  (17) 

Applying the principle of virtual work to Equation (13), we have  

 ,( ) = 0,B
ij j i i if u u dσ ρ δ

Ω
+ − Ω∫   (18) 

where iuδ  is the virtual displacement. After integrating by parts and applying the divergence 



theorem, the weak formulation is obtained as [61]  

 , = 0.B
ij i j ij j i i i i iu d n u dS f u d u u dσ δ σ δ δ ρ δ

Ω Γ Ω Ω
− Ω+ + Ω− Ω∫ ∫ ∫ ∫   (19) 

Considering the symmetry of the stress tensor ( = )ij jiσ σ  and applying the boundary conditions, 

we have  

 = .s B
i i ij ij i i i i

f
u u d d F u dS f u dρ δ σ δε δ δ

Ω Ω Γ Ω
Ω+ Ω + Ω∫ ∫ ∫ ∫  (20) 

Substituting the constitutive law in Equation (16) into Equation (20), we obtain the finite element 

formulation  

 = .s B
i i ijkl kl ij i i i i

f
u u d C d F u dS f u dρ δ ε δε δ δ

Ω Ω Γ Ω
Ω+ Ω + Ω∫ ∫ ∫ ∫  (21) 

In the finite element analysis, the displacements within each element are interpolated by means 

of shape functions as [60]  

 ( ) ( ) ( )= ,e e eu H U  (22) 

where ( )eH  is the displacement interpolation matrix, the superscript e  represents the element 

e , and the nodal displacement vector ( )eU  is expressed as ( )
1 1 1= {       }e T

n n nu v w u v wU   for an 

element of n  nodes. The strain vector is evaluated by  

 ( ) ( ) ( )= ,e e eB Uε  (23) 

where ( )eB  is the strain-displacement matrix which is written as  

 

1

1

1
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1 1

1 1

1 1

= .

n
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e
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hh
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hh
yy

hh
z z

h h h h
y x y x

h h h h
z y z y

h h h h
z x z x

∂∂ 
 ∂∂ 

∂∂ 
 ∂∂
 

∂∂ 
 ∂ ∂
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 

B   (24) 

Substituting Equations (22) and (23) into Equation (21), we have the weak formulation in matrix 

form as  



 = ,+MU KU F  (25) 

where M  is the mass matrix, K  is the stiffness matrix, and F  is the force vector. The 

assembled matrices following the convention of direct stiffness method [60] are summarized as  

 ( ) ( ) ( ) ( ) ( ) ( )
( )= , = ,e e e e T e e
e

e
dρ

Ω
Ω∑ ∫M M M H H  (26) 

 ( ) ( ) ( ) ( ) ( ) ( )
( )= , = ,e e e T e e e
e

e
d

Ω
Ω∑ ∫K K K B C B  (27) 

    

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

= ,

= , = .

e e
s B

e e

e e T S e e e e T B e e
es B e
f

dS d
Γ Ω

+

Ω

∑ ∑

∫ ∫

F F F

F H F F H f
 (28) 

 

4 Coupling between the peridynamic and finite element subregions 
 

4.1 Coupling schemes 
To gain the efficiency from finite element analyses and exploit the generality of peridynamics in 

the presence of discontinuities, a domain is partitioned into a conventional FE subregion and a 

peridynamic subregion as shown in Figure 3. With the coupling approach, the subregion where 

failure is expected can be modeled using peridynamics. The overall computational cost is 

reduced by using FEM for the remainder of the domain. 

 
Figure 3: Partitions of the domain. The FE subregion and the peridynamic (PD) subregion are bridged by 

interface elements. 

 

In the conventional FE subregion, the lumped mass matrix is formed by distributing the total 



element mass to nodes of the element [60]. The internal forces on FE nodes can be calculated as  

 ( ) ( ) ( )= = ,int int e e e

e e
∑ ∑F F K U  (29) 

where ( )eK  is the element stiffness matrix. The equation of motion of an FE node is obtained as  

 = ,ext int
I I I IM −U F F  (30) 

where IM  is the lumped mass of node I , IU  is the acceleration vector field, ext
IF  is the 

external force applied on the node I  by evaluating the corresponding components of F  in 

Equation (28), and int
IF  is the internal force vector of the node I . Because the mass matrix is 

diagonal, Equation (30) can be solved without factorizing a global stiffness matrix. 

 

To bridge the FE subregion and the peridynamic subregion, we introduce an interface element. A 

three-dimensional interface element consisting of eight FE nodes is illustrated in Figure 5. In an 

interface element, a number of peridynamic nodes are embedded for the calculation of coupling 

forces. The interacting forces between embedded peridynamic nodes and peridynamic nodes out 

of interface elements are called coupling forces. It is worth noting that interactions between 

embedded peridynamic nodes are not considered as coupling forces. The number of embedded 

peridynamic nodes is determined by the size of the horizon, and there should be sufficient 

embedded nodes within the horizon of nodes near the interface of the peridynamic subregion and 

the FE subregion as shown in Figure 4. 

 
Figure 4: Interface element for the coupling of FE subregion and peridynamic subregion. 



       

To evaluate coupling forces, each embedded peridynamic node represents a material volume of 
3( )x∆  inside an interface element. However, embedded peridynamic nodes are not involved in 

the global equation. In other words, the displacements of embedded peridynamic nodes are not 

calculated by solving the equation of motion. Therefore, the mass of an interface element is 

equally distributed to FE nodes of the interface element. Consider an embedded peridynamic 

node subjected to the coupling force cpf  as shown in Figure 5, the coupling force is then 

divided to FE nodes of the interface element by means of shape functions as  

 = ( , , ) , = 1, ,8,cp cp
i i iφ ξ η ψf f   (31) 

where iφ  is the shape function of the node i  belonging to the interface element, ( , , )ξ η ψ  are 

the natural coordinates of the embedded node in the interface element, which should be 

determined by the inverse isoparametric mapping. We designate this coupling scheme as the 

VL-coupling scheme since the whole volume of the interface element is subjected to coupling 

forces. On the other hand, different from the VL-coupling scheme, we might divide coupling 

forces only to the FE nodes on the interface segment as shown in Figure 6. Therefore, FE nodes 

not on the interface segment are subjected to internal forces arising from the element stiffness 

only. Since the interface between the peridynamic and FE subregions is similar to a contact 

surface, the scheme demonstrated in Figure 6 is designated as the CT-coupling scheme. To 

implement the CT-coupling scheme, interfaces between the peridynamic subregion and the FE 

subregion have to be defined prior to analyses. Coupling forces on embedded nodes are divided 

to those FE nodes on the interface segment as shown in Figure 6 by  

 = ( , ) , = 3,4,7,8,cp cp
i i c c iφ ξ ηf f  (32) 

where iφ  is the shape function on the interface segment, and ( , )c cξ η  are the natural 

coordinates of the projection of an embedded node onto the interface segment. 

 

In general, the equation of motion for FE nodes of an interface element is written as  

 ˆ= ,ext int
I I I IM −U F F  (33) 

where ext
IF  is the external force by evaluating Equation (28), and the internal force is given as  



 ( ) ( )ˆ = = ,int int cp e e cp
I I I I

e I

 + +  
∑F F f K U f  (34) 

in which [ ]I⋅  denotes the corresponding components of a vector associated with the node I  of 

the interface element, and cp
If  is the summation of coupling forces on the node I . The explicit 

algorithm is employed for the transient dynamic analyses. Nodal accelerations are calculated first, 

and nodal velocities and displacements are updated subsequently. After the displacements of FE 

nodes of the interface elements are calculated, the displacements of embedded peridynamic 

nodes are then determined by  

 = ( , , ) , = 1, ,8,eb i i iφ ξ η ψU U   (35) 

in which ( , , )ξ η ψ  are the natural coordinates of an embedded peridynamic node in the interface 

element, and iU  is the nodal displacement of an interface element. For peridynamic nodes out 

of the interface elements, Equation (10) is used to update nodal accelerations. 

 

4.2  Inverse isoparametric mapping 
To couple peridynamic subregions with finite element subregions, a certain number of 

peridynamic nodes are embedded in the interface elements. If the Cartesian coordinates of an 

embedded peridynamic node are known, the natural coordinates of the embedded peridynamic 

node in an interface element should be determined by the inverse isoparametric mapping, which 

is essential especially for random discretizations.  

 

Figure 5: VL-coupling scheme that divides a coupling force cpf  to FE nodes of the interface element. 

 



 

However, the inverse isoparametric mapping from the Cartesian coordinates to the natural 

coordinates is nontrivial since equations to be solved are nonlinear. Murti and Valliappan [62] 

presented a numerical technique by bisecting a line passing a point and a node of known natural 

coordinates, and this method was extended to the three-dimensional space by Murti  et al. [63]. 

However, the bisection method has its limitations [64]. 

 

 

A more generalized approach for the inverse isoparametric mapping is presented by 

Chinnaswamy  et al. [64]. For the inverse mapping of an embedded peridynamic node with 

known Cartesian coordinates ˆ ˆ ˆ( , , )x y z , the equation to be solved is written as  
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where ( , , )ξ η ψ  are the natural coordinates of an embedded peridynamic node in an interface 

element to be determined. By expanding the vector f  in Taylor’s series and omitting the second 

and higher order terms, it can be shown that [64]  

 

Figure 6: CT-coupling scheme that divides a coupling force cpf  to FE nodes on the interface segment. 
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where 0 0 0 0= [ , , ]Tξ η ψI  is an approximate solution, and 0f  is the vector f  evaluated at the 

approximate solution 0I . Equation (37) can be rewritten as  
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and it can be simplified as  

 0= ,+I I I∆  (39) 

where  

 1
0 0= = .

ξ
η
ψ

−

∆ 
 ∆ − 
 ∆ 

I J f∆  (40) 

The updated solution of I  is used as the value of 0I  in Equation (39) for the next iteration. A 

few iterations are performed till the solution of I  converges. 

 

If the CT-coupling scheme is employed, coupling forces on embedded peridynamic nodes are 

only distributed to FE nodes on the interface segment as shown in Figure 6. Hence, the natural 

coordinates of the projection of an embedded peridynamic node onto the interface segment have 

to be determined. 



 
Figure 7: Projection of an embedded peridynamic node on an interface segment. 

 

Let t  be the position vector of an embedded node sn , and the projection of sn  onto the 

interface segment is denoted by sn ′  as shown in Figure 7. The position vector r  of the point 

sn ′  on the interface segment can be expressed as  

 1 1 2 2 3 3= ( , ) ( , ) ( , ) ,c c c c c cf f fξ η ξ η ξ η+ +r e e e  (41) 

where ( , )c cξ η  are the natural coordinates of the point sn ′  on the interface segment, and  

 
4

=1
( , ) = ,j

i j i
j

f xξ η φ∑  (42) 

in which jφ  is the shape function of the node j  on the interface segment. The natural 

coordinates ( , )c cξ η  of the point sn ′  on the interface segment must satisfy [65]  

 ( ) = 0,
ξ
∂

⋅ −
∂

r t r  (43) 

 ( ) = 0.
η
∂

⋅ −
∂

r t r  (44) 

However, there is no analytical solution to Equations (43) and (44). To solve numerically, a few 

iterations of the least-squares projection are used to generate an initial guess as  

 0 0= 0, = 0,ξ η  (45) 
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 1 1= , = .i i i iξ ξ ξ η η η+ ++ ∆ + ∆  (47) 

With an initial guess, Newton-Raphson method is then utilized to find the solution of Equations 

(43) and (44) as [66]  

 , ,= ( ) ( ),ξ ηξ η∆ ∆ − ⋅ − ⋅ −H r r t r r t  (48) 
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 1 1= , = .i i i iξ ξ ξ η η η+ ++ ∆ + ∆  (50) 

The solutions of 1iξ +  and 1iη +  are used to update the value of the position vector r , and then 

Equation (48) is evaluated again for the next iteration. The converged solutions of 1iξ +  and 1iη +  

are the natural coordinates of the point sn ′  on the interface segment. 

 

5 Numerical applications 
 
5.1 One-dimensional bar 
For benchmarking, the present coupling approach of peridynamics with FEM is employed to 

study the axial deformation of a one-dimensional bar. The length of the bar is 9.5  mm, and 

dimensions of the cross section are 0.5  mm by 0.5  mm. Young’s modulus E  of the bar is 

70  GPa, and the density is 2700  kg/m 3 . Figure 8 shows the multiscale discretization of the 

bar. The finite element mesh size is 1.5  mm, and the conventional bar elements are utilized. 

The stiffness of a bar is = EAk
L

, where A  is the cross-sectional area and L  is the length of 

the bar. The peridynamic grid spacing is 0.5  mm, which is equal to the width of the bar. By 

setting the horizon to 2 x∆ , the one-dimensional micromodulus 1c  is 235.6 10×  N/m 6 . Two 

interface elements are used to couple peridynamic and FE subregions, and each interface element 



has two embedded peridynamic nodes for the calculation of coupling forces as shown in Figure 

8.  

 

 
Figure 8: Discretization of a one-dimensional bar for coupling.  

 
(a)                                        (b) 

Figure 9: Axial displacement along the bar using the (a) VL-coupling scheme and (b) CT-coupling 

scheme. 

 

A tensile loading with the magnitude of = 175F  N is applied on both ends of the bar under the 

quasi-static condition. The force is gradually increased during 50,000  steps with the 

calculation time step 8= 5 10dt −×  s, which is less than the critical time step for the explicit time 

integration. Figure 9(a) shows the displacement along the bar using the VL-coupling scheme. 

Nodal displacements in the peridynamic subregion show good agreement with the quasi-static 

solution. The displacements of the FE nodes, however, show small discrepancies. The reason is 

that coupling forces in an interface element are divided to all FE nodes of the element using the 

VL-coupling scheme so that FE nodes at the interfaces of subregions ( = 1.75x ±  mm) only 

receive partial coupling forces. FE nodes at the other end of the interface elements ( = 3.25x ±  



mm) receive the rest of coupling forces, and are also subjected to internal forces arising from the 

element stiffness. Consequently, the displacements of FE nodes at the interfaces are slightly 

overestimated, and displacements of other FE nodes are underestimated as indicated in Figure 

9(a). In contrast, the solution using the CT-coupling scheme, which distributes coupling forces 

only to FE nodes at interfaces, is almost identical to the quasi-static solution as shown in Figure 

9(b). Hence, for the calculation of axial displacement, the CT-coupling scheme is more effective 

than the VL-coupling scheme to achieve the coupling between the peridynamic subregion and 

the FE subregion. 

 

5.2 Three-dimensional bar 
A three-dimensional bar subjected to tension is 

examined to compare the solutions of the 

present coupling approach and the classical 

(local) elasticity solutions. The dimensions of 

the bar are taken to be 10  mm in length, 7  

mm in width, and 7  mm in thickness as 

shown in Figure 10. The three-dimensional 

model is partitioned into two FE subregions 

and one peridynamic subregion. Each FE 

subregion consists of four eight-node solid 

interface elements, and the mesh size of the interface element is 3.5  mm. The peridynamic 

subregion is uniformly discretized with the grid spacing = 0.5x∆  mm, and the size of the 

horizon is set to = 1.0δ  mm. In the interface element, two additional layers of peridynamic 

nodes are embedded along the longitudinal direction to ensure sufficient nodes in the horizon of 

peridynamic nodes near the interfaces. Tractions at both end surfaces are gradually applied up to 

= 700xσ  MPa during 100,000  steps as quasi-static loading, and the calculation time step is set 

to 8= 5 10dt −×  s. Young’s modulus of the bar is 70  GPa, Poisson’s ratio is 0.25 , and the 

density is 2700 kg/m3. 

We first examine the numerical solutions using the VL-coupling scheme. The longitudinal 

displacements xu  at three measuring positions are compared to the quasi-static results as shown 

 
Figure 10: Three-dimensional bar subjected to 

tension. 



in Figure 11(a). The displacement xu  at the position 1p , which is the at the end surface, is 

underestimated compared to the quasi-static solution. On the other hand, the displacement at 2p , 

which is at the interface of the peridynamic subregion and the FE subregion, and the 

displacement at 3p , which is inside the peridynamic subregion, show good agreement with the 

quasi-static solutions. To look into Poisson effect, the transverse displacements measured at 

different positions are plotted in Figure 11(b). The transverse displacement 1q  at the end 

surface is smaller than the quasi-static value since the longitudinal displacement at the end 

surface is underestimated. Nevertheless, the transverse displacement 2q  at the interface 

demonstrates close agreement with the quasi-static solution, which indicates that Poisson effect 

is preserved at the interface. The transverse displacement at 3q , which is inside the peridynamic 

subregion, also matches the quasi-static solution. 

 

For the comparison of two types of coupling schemes, the CT-coupling scheme, which achieves 

coupling by considering the interfaces of subregions similar to contact surfaces, is then employed 

to study this quasi-static problem. As shown in Figure 12(a), the longitudinal displacement 1p  

at the end surface is close to the quasi-static solution with the error less than 2 %. The 

longitudinal displacements at interface and inside the peridynamic subregion, denoted by 2p  

and 3p  respectively in Figure 12(a), are almost identical to the quasi-static solutions. The 

transverse displacements measured at different positions are plotted in Figure 12(b). With the 

improved result in the longitudinal displacement at the end surface, the transverse displacement 

1q  at the end surface turns to be very close to the quasi-static solution. On the other hand, the 

transverse displacement 2q  at the interface is overestimated. This phenomenon occurs due to 

the reason that decompositions of coupling forces in the transverse direction are divided only to 

FE nodes on the interface. By comparing Figures 11 and 12, it is observed that the CT-coupling 

scheme is effective in resolving displacements normal to the interface of peridynamic and FE 

subregions. On the other hand, the VL-coupling scheme, which divides coupling forces to all FE 

nodes of the interface element, is capable to preserve Poisson effect at the interface. 

 



 

 

 

 

 
(a)                                    (b) 

Figure 11: Displacements (a) xu  and (b) yu  at different positions using the VL-coupling scheme. 

Coordinates of the measuring position are given in parenthesis. 

 

 

 

 

 
(a)                                     (b) 

Figure 12: Displacements (a) xu  and (b) yu  at different positions using the CT-coupling scheme. 

Coordinates of the measuring position are given in parenthesis. 

 



Figure 13 shows the longitudinal 

displacement along the edge of the bar 

solved by the CT-coupling scheme. It is 

noted that a smooth curve can be 

obtained if the nodal displacements are 

connected, which is different from the 

result in [52] where a jump in 

displacement is observed at the 

interface. The strain xε  distributions in 

the bar and at the interface are plotted in 

Figure 14. Nodal strains in the FE 

subregions are obtained by evaluating 

Equation (23), and nodal strains in the peridynamic subregion are calculated as the average bond 

stretch within the grid width x∆ . Considering the quasi-static condition, the analytical value of 

strain xε  is 0.01 . The strain of the coupling model is in the range of 0.0099  to 0.0105  as 

shown in Figure 14, which agrees with the quasi-static solution. 

 
(a)                                        (b) 

Figure 14: Strain xε  distributions (a) in the bar and (b) at the interface when the applied traction 

= 700xσ  MPa. The CT-coupling scheme is used in the simulation. 

 

 
Figure 13: Axial displacement along the edge of the bar 

using the CT-coupling scheme. 

 



The essence of coupling forces is 

interactions between nodes in the 

peridynamic subregion and material 

volumes of an adjacent continuous 

body (i.e. interface elements) 

represented by embedded 

peridynamic nodes. Therefore, the 

ratio of the grid spacing of 

peridynamic nodes to the mesh size 

of interface elements should not 

affect the results. To illustrate this 

point, Figure 15 shows the 

summation of coupling forces in the 

longitudinal direction on the 

interface elements at the left end of the bar as the applied traction increases. As indicated by the 

comparison in Figure 15, differences in the results using the grid spacing = 1.0x∆  mm and 

= 0.5x∆  mm are insignificant. 

 

5.3 Mixed mode fracture in a tension-shear specimen 
A benchmark problem of mixed mode crack propagation in a concrete specimen has been 

investigated experimentally by Nooru-Mohamed et al. [19]. The double-edge-notched specimen 

is illustrated in Figure 16(a). The dimensions of the specimen are taken to be 200  mm in both 

length and height, 50  mm in width, and two notches at edges are 25  mm in length, 5  mm in 

height, and 50  mm in width. For the numerical study, the specimen is partitioned into two FE 

subregions and one peridynamic subregion as shown in Figure 16(b). The FE subregion is 

discretized with two mesh sizes, 10 mm×  10 mm×  16.25 mm and 10 mm×  10 mm×  13 mm. 

The peridynamic subregion is discretized with the grid spacing = 5.0x∆  mm, which is 1/10  

of the specimen thickness, and the horizon is set to = 1.0δ  mm. The notches in the 

peridynamic subregion are introduced by deleting nodes along two notches and removing all 

bonds across the notches. Since the ratio of the horizon to the grid spacing is equal to two, two 

 
 

Figure 15: Summation of coupling forces in the longitudinal 

direction on the interface elements at the left end of the bar. 

The CT-coupling scheme is used in the simulation. 



layers of peridynamic nodes adjacent to interfaces are embedded in interface elements for the 

calculation of coupling forces.  

      
(a)                                       (b) 

Figure 16: Mixed mode fracture test: (a) geometry of the specimen; (b) subregions of the coupling model.  

 

Young’s modulus, Poisson’s ratio, and fracture energy were not measured in the experiments. 

Therefore, we adopt the material properties = 30E  GPa and = 110fG  J/m 2  as in [10]. For 

Poisson’s ratio, it is estimated as = 0.2ν  in the numerical studies in [10, 12], and = 0.3ν  is 

used in [67]. In the present study, Poisson’s ratio = 0.25ν  is assumed. The density is calculated 

from the concrete composition given in [19] as = 2265ρ  kg/m 3 . By applying Equation (8), the 

critical bond stretch is obtained as 4
0 = 5.5277 10s −× . The brittle material model illustrated in 

Figure 2 is utilized for the peridynamic subregion, and the linear elastic model is employed for 

the remaining FE subregions, where material parameters = 30E  GPa and = 0.25ν  are used. 

 

For the comparison, the load-path 1b (specimen 46-05) in [19] is considered. A horizontal shear 

force of 10 kN is applied first, and then the vertical displacement nu  is applied on the top and 

bottom of the specimen as shown in Figure 16(a). In the numerical calculation, the time step is 

set to 7= 1 10dt −×  s, which is less than the critical time step for the explicit time integration. 

The vertical displacement nu  is applied by imposing a constant velocity of 10  mm/s as 



quasi-static loading. We first examine the numerical predictions of crack paths using the 

VL-coupling scheme. The cracks initiate near the notches as shown in Figure 17(a), and 

propagate along the horizontal direction for about 50  mm. As the boundary displacement 

increases, the direction of propagation changes as shown in Figures 17(b) and 17(c). At the 

boundary displacement = 0.09nu  mm, two cracks are connected as shown in Figure 17(d). The 

numerical prediction of crack paths using the VL-coupling scheme shows differences with the 

experimental observations in [19]. 

 

We then apply the CT-coupling scheme for the numerical simulation. Interfaces are predefined in 

the reference configuration, and there are 280 interface segments with the given mesh sizes. 

Natural coordinates of the projections of embedded nodes onto interface segments are saved to a 

list. In the subsequent calculations, the natural coordinates of projected points are referred, and 

the coupling forces on embedded peridynamic nodes are divided to FE nodes on interface 

segments. The damage evolution is shown in Figure 18. Crack initiation occurs at the left and 

right notches as shown in Figure 18(a), and materials ahead of crack tips are damaged for the 

length of around 15  mm to 20  mm. Due to the angle change of the principal stress, cracks 

propagate with an angle as shown in Figure 18(b). As the boundary displacement increases, two 

curvilinear crack paths are clearly observed in Figure 18(c). An enclose area is gradually formed 

between two curvilinear cracks as indicated in Figure 18(d). The numerical prediction of crack 

paths shows agreement, especially for the lower crack, with the experimental observation 

presented in [19], which is illustrated using the solid line in Figure 18(d). The small 

discrepancies appeared in Figure 18(d) might be caused by the perfectly brittle material model 

adopted in the numerical simulation. More investigation of material models for concrete in the 

framework of peridynamics is required in the future. Note that the numerically predicted crack 

paths are in perfect symmetry. On the contrary, the cracks in the experiment do not show perfect 

symmetry, and we might speculate on symmetry breaking caused by the slight differences in the 

loading condition and the material heterogeneity. 

 

Compared to the numerical results using the VL-coupling scheme, the results using the 

CT-coupling scheme demonstrate better agreement with the experimental observation. The 



reason for the inferiority of the VL-coupling scheme in this mixed mode fracture problem is that 

the horizontal displacement at edges caused by the constant shear loading is underestimated after 

the applied vertical displacement at boundaries reaches the critical value for the crack initiation 

at two notches. Consequently, the opening-mode fracture dominates, and the large area ahead of 

crack tips is damaged in the plane of notches. After the intact region in the middle of the 

specimen becomes relatively small, rotations of crack paths then take place as shown in Figure 

17. 

 

 
                (a)                                      (b) 

 
(c)                                      (d) 

Figure 17: Numerical prediction of crack paths using the VL-coupling scheme. Boundary displacement: 

(a) = 0.0220nu  mm; (b) = 0.0225nu  mm; (c) = 0.03nu  mm; (d) = 0.09nu  mm.  

 

 

 



 

 

 

 

 
(a)                                      (b) 

 

 
(c)                                      (d) 

 

Figure 18: Numerical prediction of crack paths using the CT-coupling scheme. Boundary displacement: (a) 

= 0.0220nu  mm; (b) = 0.0225nu  mm; (c) = 0.03nu  mm; (d) = 0.09nu  mm. Solid curves are 

crack paths observed in the experiment [19].  

 

 

 

 



6 Conclusions 
A coupling approach of discretized peridynamics with FEM is developed in this research. To 

bridge conventional FE subregions and peridynamic subregions, an interface element is 

introduced. The proposed coupling approach is different from other methods in the sense of 

direct coupling via interface elements. Depending on the size of the horizon, a number of 

peridynamic nodes are embedded in an interface element. The embedded peridynamic nodes are 

not involved in the global equation, but essential in the calculation of coupling forces. The 

coupling forces describe interactions between embedded peridynamic nodes in interface 

elements and peridynamic nodes in peridynamic subregions. Two types of coupling schemes are 

introduced. In the VL-coupling scheme, coupling forces on embedded peridynamic nodes are 

divided to FE nodes of interface elements. On the other hand, coupling forces are divided only to 

FE nodes on interface segments in the CT-coupling scheme. The inverse isoparametric mapping 

techniques to determined the natural coordinates of embedded peridynamic nodes in the interface 

elements and the natural coordinates of projected points on the interface segments are 

summarized. 

 

Numerical simulations are conducted to compare the computational results using the coupling 

approach to the classical elasticity solutions. The axial deformation of a one-dimensional bar 

under quasi-static loading is studied. It is found that the displacements at interfaces of subregions 

are slightly overestimated, and the displacements in the FE subregions are underestimated using 

the VL-coupling scheme. On the other hand, the numerical solution using the CT-coupling 

scheme is almost identical to the quasi-static solution in all subregions and interfaces. For 

three-dimensional simulations, a bar subjected to  quasi-static tension is partitioned into a 

peridynamic subregion and two FE subregions consisting of eight-node interface elements at 

both ends of the bar. By measuring displacements at different positions, the CT-coupling scheme 

is found to be effective in resolving displacements normal to the interface of peridynamic and FE 

subregions, and the VL-coupling scheme is capable to preserve Poisson effect at the interfaces. 

Longitudinal strain distributions in the bar and at the interface using the CT-coupling scheme 

demonstrate good agreement with the quasi-static solution. 

 



The last numerical example is the mixed mode fracture in a concrete specimen  subjected to 

quasi-static loading. The region where failure is expected is modeled using peridynamics, and 

the remaining region is modeled using conventional FEM to reduce the computational cost. 

Numerical predictions of crack paths using the VL-coupling scheme and the CT-coupling 

scheme are studied. Two independent curvilinear crack paths are observed in the results using 

the CT-couping scheme, and the numerical predictions of crack patterns are close to the 

experimental observations presented in [19]. 
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